高中分数第1篇高分策略1:明确一个实验的三大知识主干在新高考形式下,不能认为一个实验只不过是读数或实验原理的理解或实验的操作,更不能认为就是数据的处理与结果分析,而应该认识到一个实验是基本仪器的使用、下面是小编为大家整理的高中分数8篇,供大家参考。
高中分数 第1篇
高分策略1:明确一个实验的三大知识主干
在新高考形式下,不能认为一个实验只不过是读数或实验原理的理解或实验的操作,更不能认为就是数据的处理与结果分析,而应该认识到一个实验是基本仪器的使用、实验的设计、实验数据的处理与实验结构的分析三个有机体的合成。这三大部分便构成了一个实验的三大知识主干。主干知识向来是高考大舞台中的重要角色,一直受到命题专家的青睐。对于一个实验的三大知识主干要有明确的认识:
基本仪器的使用
基本仪器的使用是实验考查的基础内容,无论是实验的设计还是实验结果的分析,往往都涉及基本仪器的使用,所以 一些基本仪器的原理、使用方法、注意事项和读数等,在近几年的高考中不断出现,长度和各电学参量的测量及相关仪器的使用是考查的热点,在复习时一定要注意。高考中出题频率较高的基本实验仪器有刻度尺、游标卡尺、螺旋测微器、打点计时器、秒表、电压表、电流表、多用电表以及传感器等。
实验的设计
近几年来,高考物理实验的考查已经由原来单一的、基本的形式向综合的、高层的方向发展,表现之一是加强了对同学们动手能力的考查。试题往往从实验原理、器材的选择和使用、实验步骤和现象的观察等方面进行全面的考查,表现在设计型实验题频频出现,设计型实验题一般 是以规定的实验原理、方法和器材为基础编制出来的。这些实验可以有效地培养同学们的观察能力和激发同学们的学习兴趣。
实验数据的处理与实验结构的分析
对考生能力的考查是历年高考的一个主题,对实验数据的处理、实验结果的分析能力的要求越来越高。试题往往要求同学们通过研究题给电路、图表和数据,运用物理知识和数据推出正确结果,并能就实验装置、操作以及数据处理等方面分析产生误差的原因,这就要求同学们在平 时学习中慢慢培养这方面的能力。
高分策略:2:把握好处理实验数据的两把利剑
列表法:
把被测物理量分类列表表示出来,表中对各物理量的排列习惯上是先记录原始数据,后计算结果。列表法可大体反映某些因素对结果的影响,常用作其他数据处理方法的一种辅助手段。
图像法:
把实验测得的量按自变量和因变量的函数关系用图像直观地显示出来。根据实验数据在坐标纸上画出图像,若是反比关系一般改画成正比图线,同时注意图像斜率、图像在坐标轴上截距的物理意义。值得提醒的是,创新实验的落脚点几乎都是图像,故备考时一定要将 图像法处理数据作为重中之重。
高分策略3:要善于提取一个实验的精髓
俗话说“擒贼先擒王,打蛇打七寸”。同样对于一个实验,复习时必须抓住其精髓部分,然后以该实验的精髓部分为核心进行拓展,这样才能真正起到事半功倍的效果。很多同学学习实验一直很努力,也在不断地做练习题,可是同一个实验,换一种考查方式就不会了,更不要说触类旁通了。纵观近几年的高考创新实验发现:实验题一年比一年“新”,年年都在“变”,但是这种“变”只不过是实验命题的形式在变,所谓的“新”,只不过是实验的环境新了,知识点是不会新的,更不会变的,所以复习一个实验我们要抓住其精髓部分。
高分策略4:如何与命题专家想到一块儿
高考物理实验是“年年有花开,年年花不同”,这说明每年的高考结束后命题专家都在思考一个问题,那就是“下一 次命题该如何出题呢?”因此我们在备考的同时也应该跟着命题人一块儿想,那么如何做才能使我们与命题专家想到一块儿呢?对于这一点,我们可以按以下方案去 做,那就是:
稳端“碗里”的——弄透教材中的基础实验
其含义是:熟悉教材中的每一个实验的基本原理、实验的基本器材、实验的过程,也就是说要熟悉每一个实验的“源”与“理”.
近年来高考实验题已由侧重于考查实验仪器的使用、基本操作等最基础的实验能力,向着侧重于考查对实验原理的理解、实验方法的灵活运用等更高层次的能力转变,要求考生运用学过的实验原理和方法,选择合适的仪器,设计出合理的方案去解决新的实验问题.纵观近几年的高 考实验题,几乎都是教材中内容的改编、重组,教材实验的延伸,或者是教材实验的重新设计,通过这样做来鉴别考生独立解决新问题的能力和知识的迁移能力,也体现了新课程改革对学生实践能力和创新精神的要求。可见教材中的实验永远是高考创新实验的命题根源,如果将高考创新实验比作“天空中的风筝”,那么教材中的基本实验就是“风筝的线”。这就要求我们在高考实验备考中要紧扣教材中的实验,弄清楚教材中每一个实验的基本原理、实验步骤、实验的操作过程、实验数据 的处理,不要将理解实验变成“背”实验,更不要对原理的理解和方法的掌握只是“纸上谈兵”,否则高考实验稍作一些变形,我们就会感到无从下手。只有将课本上的实验复习好了,才能举一反三,触类旁通。
盯住“盘里” 的——分析透近几年的高考实验记录
其含义是:在复习完一个实验的时候,我们应该查阅该实验在近几年高考中命题的情况,根据命题中“稳中求变”的 特点,命题人在下一次对该实验进行考查时是不可能有很大变动的.很多考生在实验复习中花了不少时间,但是在复习的过程中却很少去做一件很重要的事情,那就是查阅《考试大纲》中的实验在历年高考中曾经考查过的方式.在查阅的时候我们要做好以下规律的总结:
(1)归纳出近几年实验试题的命题规律
①题型特点
规律一:“一小题” 该小题命题立足教材,侧重考查完成实验的能力。涉及基本仪器的使用(含读数)、实验原理和测量方法的理解、实验条件的控制、实验步骤的编排、实验数据的处理、实验误差的分析。
规律二:“一大题” 该大题命题立足迁移,侧重考查设计简单实验方案的能力。突出实验原理的迁移、测量方法的迁移、数据处理方法的迁移(图像法和平均值法)等。
规律三:“大题新” “新”可以更加有效地考查考生分析问题的能力,区分度也很明显。其实这类题依然是以实验基础为依据,只不过在新的背景、新的命题方式下进行考查,说到底物理实验的考查是对思维的一种检验,因此在复习时要努力培养分析问题、解决问题的思维习惯,这样做才能应对层出不穷的“新”题。
②难点设置
实验的难点设置主要有:器材的选取和电路的选择;实验原理、方法的理解和实验方案的设计;实验数据的分析和处理。
(2)查看某一实验的历年高考记录
在查看近几年的高考实验时还要注意总结同一实验在近几年的命题规律,找出同一实验在不同时间命题的共同规律、 不同规律,然后作出一些新的动态分析。如对于纸带问题,通过近几年的高考命题我们发现关于纸带问题中的“黄金命题热点”有:①纸带上某点瞬时速度的计 算;②计数点之间的时间间隔的计算;③加速度的计算;④纸带上两计数点之间距离的测量。其中涉及的方法主要有“逐差法”和利用v-t图像求加速度法。
以上规律的总结,能使我们对实验的复习做到有的放矢,确定自己的复习方向,找出自己的不足之处,以便取得最佳的复习效果。
想到“锅里” 的——猜想命题专家下一次可能的考查方式
其含义是:新高考的命题要求是要具有一定的创新度,当然实验的命题也不例外,也就是说命题专家会不断地思考对于某一个实验在下一届的高考中该如何去命题,因此作为一个高考备考的考生,最重要的一步是当你看到某一个实验的时候,要想想本实验还可以用什么方法来 处理?下一次可能会怎样出题?一个优秀的考生不在于他做了多少题,而在于他悟出了多少题以及对于一个实验可以采用多少种实验方法和实验数据的处理方法!那 么我们该如何去悟才能与命题专家想到一起呢?通过对近几年高考的分析来看,可以从以下两个角度着手:
(1)当见到一个实验图像或处理方法后,要试着想想还有哪些可用于处理本实验的图像或方法。
(2)要从多个角度去思考实验方案、物理量的测量。在实验的复习中,当遇到一个实验时我们尽量从多个角度去思考实验方案、物理量的测量,只有这样我们才能很好地分析那些“源于教材但不拘泥于教材”的高考创新实验。
高中分数 第2篇
误区一误认为变形虫的分裂生殖是无丝分裂。其实,变形虫分裂过程中有核膜解体、纺锤体和染色体形成等过程,是典型的有丝分裂。
误区二误认为在生物体内所有的反应都需在酶的催化下才能进行。其实,在生物体内有些反应是不需要酶的,例如“水的光解”,只需光和叶绿素分子,没有酶的参与。
误区三误认为试管婴儿是从试管中培养出的婴儿。其实,试管婴儿是体外受精和胚胎移植的产物,即在体外的一定培养液中让精子与卵结合为受精卵,受精卵进行分裂,发育成一个多细胞胚,再将这个胚移植到母体培养,最终发育为成熟的胎儿。
误区四误认为动物都具有线粒体。其实,蛔虫、绦虫等体内寄生虫不含线粒体,因为它们长期适应寄生在人和高等动物体内缺乏游离氧气的环境中,不进行有氧呼吸,只进行无氧呼吸。
误区五误认为腺体都是内胚层发育而来。其实,汗腺、皮脂腺、乳腺、气味腺、垂体等腺体均由外胚层发育而来,肾上腺、精巢、卵巢等腺体却由中胚层发育而来。
误区六误认为原核细胞中没有细胞器。其实,原核细胞内有核糖体,只是无其他细胞器的明显分化而已。
误区七误认为人体的体液只包括组织液、血浆和淋巴。其实,脑脊液、胸腔液、心包液,消化液、汗液和尿液等都是体液。
误区八误认为酶都是蛋白质。其实,近年来的研究成果表明,酶可以分为三大类:①绝大多数酶是由蛋白质组成的;②有些酶是由蛋白质和核酸组成的;③有些酶是由核酸组成的。所以说并不是所有的酶都是蛋白质。
误区九误认为绿色植物在生态系统中只能充当生产者。其实,已发现自然界中大约有500个种食虫植物(属于绿色植物,可进行光合作用),当它们捕虫时则以狰狞的消费者面貌出现。
误区十误认为“凡是体细胞中含有三个以上染色体组的个体就是多倍体”。其实,多倍体应是“由合子发育而来的,体细胞含有三个以上染色体组的个体”。如普通小麦是六倍体,由其花粉经离体培育法获得的新植株,体细胞内虽含有三个染色体组,但由于不是合子发育而来的,所以不是三倍体,而是单倍体。
高中分数 第3篇
1、善于从题面找线索。注意时间分配,最好前面5道选择题时间控制在10分钟左右,后面两道大题一定要留够20分钟以上的时间。
此外,非选择题要从题目中找线索,如有的题目包装得很新颖,考生容易发懵,但这样的题目可能包含很多知识点,考生应在问题中搜索知识体系中相关的理论考点,即便试题所涉及的问题似懂非懂,只要把这个题的指向搞清楚了就不会出错,这样就能够获得评分点规定的分数。
2、表达要清晰。一些涉及因果分析、推理的题目,考生应该注意表达的清晰。
3、物理专有名词不能写错。答题过程中避免出现错别字,特别是专有名词。
4、实验题注意审题。把握题目中给出的实验组和对照组的有效信息。
高中分数 第4篇
直线运动问题
题型概述:直线运动问题是高中物理考试的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。
思维模板:
解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。
物体的动态平衡问题
题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。
思维模板:
(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.
运动的合成与分解问题
题型概述:运动的合成与分解问题常见的模型有两类。一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.
思维模板:
(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
抛体运动问题
题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上。
思维模板:
(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解。
力学实验中速度的测量问题
题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量。速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度。
思维模板:
用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:①vt/2=v平均=(v0+v)/2,②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法。用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt。
高中分数 第5篇
集合与简单逻辑:5分或不考
函数:高考60分:①、指数函数 ②对数函数 ③二次函数 ④三次函数 ⑤三角函数 ⑥抽象函数(无函数表达式,不易理解,难点)
平面向量与解三角形
立体几何:22分左右
不等式:(线性规则)5分必考
数列:17分 (一道大题+一道选择或填空)易和函数结合命题
平面解析几何:(30分左右)
计算原理:10分左右
概率统计:12分----17分
复数:5分
推理证明
高中分数 第6篇
必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2
选修1--1:重点:高考占30分
1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)
理科:选修2—1、2—2、2—3
选修2--1:1、逻辑用语 2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)
选修2--2:1、导数与微积分2、推理证明:一般不考3、复数
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
高中分数 第7篇
1、向量。做向量运算时可以利用物理上矢量法的正交分解做,对解一些向量难题有好处。
2、四面体。在三条棱两两垂直的四面体中,设三条棱长为abc底面的高为h,则有,1/h∧2=1/a∧2+1/b∧2+1/c∧2
3、平面方程。空间直角坐标系中的平面方程,先求平面的一个法向量n=(a,b,c)再取平面内任意一点A(e,f,g),则平面的方程为a(x-e)+b(y-f)+c(z-g)=0,化成一般式Ax+By+Cz+D=0,之后就可以解很多东西,比如求点M(o,p,q)到面距离,用公式d=丨Ao+Bp+Cq+D丨/√(A∧2+B∧2+C∧2)(类似点到直线距离公式)
4、正弦、余弦的和差化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
【注意右式前的负号】以上四组公式可以由积化和差公式推导得到
5、函数的周期性问题(记忆三个):1)若f(x)=-f(x+k),则T=2k;2)若f(x)=m/(x+k)(m不为0),则T=2k;3)若f(x)=f(x+k)+f(x-k),则T=6k。注意点:周期函数,周期必无限周期函数未必存在最小周期,如:常数函数。周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
6,数列的终极利器,特征根方程。(如果看不懂就算了)。首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)
7,函数详解补充:1、复合函数奇偶性:内偶则偶,内奇同外2,复合函数单调性:同增异减3,重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。
8,常用数列bn=n×(2²n)求和Sn=(n-1)×(2²(n+1))+2记忆方法:前面减去一个1,后面加一个,再整体加一个2
9,适用于标准方程(焦点在x轴)爆强公式:k椭=-{(b²)xo}/{(a²)yo}k双={(b²)xo}/{(a²)yo}k抛=p/yo注:(xo,yo)均为直线过圆锥曲线所截段的中点。
10,强烈推荐一个两直线垂直或平行的必杀技:已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了防止两直线重合)注:以上两公式避免了斜率是否存在的麻烦,直接必杀!
2高考数学秒杀公式及方法
11,经典中的经典:相信邻项相消大家都知道。下面看隔项相消:对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]注:隔项相加保留四项,即首两项,尾两项。自己把式子写在草稿纸上,那样看起来会很清爽以及整洁!
12,爆强△面积公式:S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题!
13,你知道吗?空间立体几何中:以下命题均错:1,空间中不同三点确定一个平面;2,垂直同一直线的两直线平行;3,两组对边分别相等的四边形是平行四边形;4,如果一条直线与平面内无数条直线垂直,则直线垂直平面;5,有两个面互相平行,其余各面都是平行四边形的几何体是棱柱;6,有一个面是多边形,其余各面都是三角形的几何体都是棱锥注:对初中生不适用。
14,一个小知识点:所有棱长均相等的棱锥可以是三、四、五棱锥。
15,求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。答案为:当n为奇数,最小值为(n-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n/4,在x=n/2或n/2+1时取到。
16,√〔(a+b)〕/2≥(a+b)/2≥√ab≥2ab/(a+b)(a、b为正数,是统一定义域)
17,椭圆中焦点三角形面积公式:S=btan(A/2)在双曲线中:S=b/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。
18,爆强定理:空间向量三公式解决所有题目:cosA=|{向量向量b}/[向量a的模×向量b的模]|一:A为线线夹角,二:A为线面夹角(但是公式中cos换成sin)三:A为面面夹角注:以上角范围均为[0,派/2]。
19,爆强公式1+2+3+…+n=1/6(n)(n+1)(2n+1);13+23+33+…+n3=1/4(n)(n+1)
20,爆强切线方程记忆方法:写成对称形式,换一个x,换一个y。举例说明:对于y=2px可以写成y×y=px+px再把(xo,yo)带入其中一个得:y×yo=pxo+px
高考数学爆强秒杀公式与方法三
21,爆强定理:(a+b+c)n的展开式[合并之后]的项数为:Cn+22,n+2在下,2在上
22,[转化思想]切线长l=√(d-r)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。
23,对于y=2px,过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。爆强定理的证明:对于y=2px,设过焦点的弦倾斜角为那么弦长可表示为2p/〔(sinA)〕,所以与之垂直的弦长为2p/[(cosA)],所以求和再据三角知识可知。(题目的意思就是弦AB过焦点,CD过焦点,且AB垂直于CD)
24,关于一个重要绝对值不等式的介绍爆强:∣|a|-|b|∣≤∣a±b∣≤∣a∣+∣b∣
25,关于解决证明含ln的不等式的一种思路:爆强:举例说明:证明1+1/2+1/3+…+1/n>ln(n+1)把左边看成是1/n求和,右边看成是Sn。解:令an=1/n,令Sn=ln(n+1),则bn=ln(n+1)-lnn,那么只需证an>bn即可,根据定积分知识画出y=1/x的图。an=1×1/n=矩形面积>曲线下面积=bn。当然前面要证明1>ln2。注:仅供有能力的童鞋参考!!另外对于这种方法可以推广,就是把左边、右边看成是数列求和,证面积大小即可。说明:前提是含ln。
26,爆强简洁公式:向量a在向量b上的射影是:〔向量a×向量b的数量积〕/[向量b的模]。记忆方法:在哪投影除以哪个的模
27,说明一个易错点:若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕,同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记!
28,离心率爆强公式:e=sinA/(sinM+sinN)注:P为椭圆上一点,其中A为角F1PF2,两腰角为M,N
29,椭圆的参数方程也是一个很好的东西,它可以解决一些最值问题。比如x/4+y=1求z=x+y的最值。解:令x=2cosay=sina再利用三角有界即可。比你去=0不知道快多少倍!
30,[仅供有能力的童鞋参考]]爆强公式:和差化积sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]积化和差sinαsinβ=[cos(α-β)-cos(α+β)]/2cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2
31,爆强定理:直观图的面积是原图的√2/4倍。
32,三角形垂心爆强定理:1,向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心)2,若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。
高中分数 第8篇
1、17题:三角函数
2、18、19、20 三题:立体几何 、概率 、数列
3、21、22 题:函数、圆锥曲线
成绩不理想一般是以下几种情况:
做题不细心,(会做,做不对)
基础知识没有掌握
解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)
心理素质不好
总之学**数学一定要掌握科学的学**方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳总结
高一年级
必修一
第一章集合与函数概念
第二章基本初等函数(Ⅰ)
第三章函数的应用
必修二
第一章空间几何体
第二章点、直线、平面之间的位置关系
第三章直线与方程
必修三
第一章算法初步
第二章统计
第三章概率
必修四
第一章三角函数
第二章平面向量
第三章三角恒等变换
(二)教学要求
在教学中,由于集合、函数等内容比较抽象,三角函数在高考中占据重要地位,平面向量又是高考中数学必考内容,教师在备课组协作的基础上应注意对各章知识的重难点的讲解和释疑,减轻学生自学的压力,增强学生学好数学的信心。
首先,在高中数学中,集合的初步知识以及与其它内容的密切联系。它们是学**、掌握和使用数学语言的基础,是高中数学学**的出发点。在教学中,应注重引导学生更好的理解数学中出现的集合语言,使学生更好的使用集合语言表述数学问题,并且可以使学生运用集合的观点,研究、处理数学问题。因此集合的基本概念、函数等有关内容是教师重点讲解的内容。
其次,函数作为中学数学中最重要的基本概念之一,教师应注意运用有关的概念和函数的性质,培养学生的思维能力;通过指数与对数,指数函数与对数函数之间的内在联系,对学生进行辩证唯物主义观点的教育;通过联系实际的引入问题和解决带有实际意义的某些问题,培养学生的实践能力和创新意识。
第三,通过对三角函数的学习,学生将进一步了解符号与变元、集合与对应、数形结合等基本的数学思想在研究三角函数时所起的重要作用,在式子与图形的变化中,教师应引导学生通过分析、探索、划归、类比、平行移动、伸长和缩短等常用的基本方法的学**,使学生在学**数学和应用数学方面达到一个新的层次。
第四,学习平面向量,不但应注意平面向量基本知识的讲解,更要充分挖掘平面向量的工具作用,提高学生应用数学知识解决实际问题的能力和实际操作的能力,使学生学会提出问题,明确研究方向,使学生学会交流,体验数学活动的过程,培养创新精神和应用能力。
第五、在学习空间几何体、点、直线、平面之间的位置关系时,重点要帮助学生逐步形成空间想象能力,严格遵循从整体到局部,从具体到抽象的原则,逐步掌握解决空间几何体的相关问题。
第六、要在平面解析几何初步教学中,帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
第七、在学算法初步、统计等内容的时候,要注意顺序渐进,不可追求一步到位,特别要注意其思想的重要性。
高二年级
必修五
第一章解三角形
第二章数列
第三章不等式
选修1-1
第一章常用逻辑用语
第二章圆锥曲线与方程
第三章导数及其应用
选修1-2
第一章统计案例
第二章推理与证明
第三章数系的扩充与复数的引入
第四章框图
选修2-1
第一章常用逻辑用语
第二章圆锥曲线与方程
第三章空间向量与立体几何
选修2-2
第一章导数及其应用
第二章推理与证明
第三章数系的扩充与复数的引入
选修2-3
第一章计数原理
第二章随机变量及其分布
第三章统计案例
(二)教学要求
高二上
必修5
学生将在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。
数列作为一种特殊的函数,是反映自然规律的基本数学模型。在本模块中,学生将通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。建立不等观念、处理不等关系与处理等量问题是同样重要的。在本模块中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。
选修1—1(文科)
在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流。
在必修课程学习平面解析几何初步的基础上,在本模块中,学生将学**圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想。
在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率的过程,刻画现实问题,理解导数的含义,体会导数的思想及其内涵;应用导数探索函数的单调、极值等性质及其在实际中的应用,感受导数在解决数学问题和实际问题中的作用,体会微积分的产生对人类文化发展的价值。
选修2-1(理科)
在本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、空间中的向量(简称空间向量)与立体几何。
在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,从而更好地进行交流。
在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。
在本模块中,学生将在学习平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线、平面位置关系的问题,体会向量方法在研究几何图形中的作用,进一步发展空间想像能力和几何直观能力。
高二下(文科)
在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是根据已有的事实和正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。归纳、类比是合情推理常用的思维方法。在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。演绎推理是根据已有的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程,培养和提高学生的演绎推理或逻辑证明的能力是高中数学课程的重要目标。合情推理和演绎推理之间联系紧密、相辅相成。证明通常包括逻辑证明和实验、实践证明,但是数学结论的正确性必须通过演绎推理或逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法)和间接证明的方法(如反证法),感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。
数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生、发展的客观需求,复数的引入是中学阶段数系的又一次扩充。在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用。
框图是表示一个系统各部分和各环节之间关系的图示,它的作用在于能够清晰地表达比较复杂的系统各部分之间的关系。框图已经广泛应用于算法、计算机程序设计、工序流程的表述、设计方案的比较等方面,也是表示数学计算与证明过程中主要逻辑步骤的工具,并将成为日常生活和各门学科中进行交流的一种常用表达方式。在本模块中,学生将学习用“流程图”、“结构图”等刻画数学问题以及其他问题的解决过程;并在学**过程中,体验用框图表示数学问题解决过程以及事物发生、发展过程的优越性,提高抽象概括能力和逻辑思维能力,能清晰地表达和交流思想。
高二下(理科)
微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段。导数概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数概念,了解导数在研究函数的单调性、极值等性质中的作用,初步了解定积分的概念,为以后进一步学**微积分打下基础。通过该模块的学**,学生将体会导数的思想及其丰富内涵,感受导数在解决实际问题中的作用,了解微积分的文化价值。
“推理与证明”是数学的基本思维过程,也是人们学**和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳、类比是合情推理常用的思维方法。在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养。演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新的结论的推理过程。合情推理和演绎推理之间联系紧密、相辅相成。证明通常包括逻辑证明和实验、实践证明,数学结论的正确性必须通过逻辑证明来保证,即在前提正确的基础上,通过正确使用推理规则得出结论。在本模块中,学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法、数学归纳法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的**惯。
数系扩充的过程体现了数学的发现和创造过程,同时体现了数学发生发展的客观需求和背景,复数的引入是中学阶段数系的最后一次扩充。在本模块中,学生将在问题情境中了解数系扩充的过程以及引入复数的必要性,学**复数的一些基本知识,体会数系扩充中人类理性思维的作用。
计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。在本模块中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。
在必修课程学习概率的基础上,学习某些离散型随机变量分布列及其均值、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。
在必修课程学习统计的基础上,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。
高三年级
选修4-1
第一章相似三角形的判定及有关性质
第二章直线与圆的位置关系
第三章圆锥曲线性质的探讨
选修4-4
第一章 坐标系
第二章 参数方程
选修4-5
第一章不等式和绝对值不等式
第二章证明不等式的基本方法
第三章柯西不等式与排序不等式
第四章数学归纳法证明不等式
(二)教学重点难点
认真学习“一标两纲一本”(《课程标准》、《数学教学大纲》、《考试大纲》和课本)。重视对《考试大纲》的研究,并结合对近年高考题的认真分析,深化对高考题的认识,明确考试要求,克服盲目性,增强自觉性,更好地指导考生进行复**。
立足基础,突出重点,这是高考试卷构成的主题。基本知识、基本技能、基本方法始终是高考试题考查的重点。在切实重视基础知识的落实中重视基本技能与基本方法的培养。
搞好数学思想方法的体现和发掘,发展理性思维。基本思想和方法分散地渗透在中学数学教材的各个内容之中,在平时的教学中,教师和学生把主要精力集中于数学新课的教学之中,缺乏对基本思想和方法的归纳和总结,在高考前的复**过程中,教师要在传授知识的同时有意识地、恰当地讲解和渗透数学的基本思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样,考生在高考中才能灵活运用和综合运用所学的知识。高考提出“以能力立意命题”,正是为了更好地考查数学思想,促进考生数学理性思维的发展。因此,要加强如何更好地考查数学思想的研究,特别是要研究试题解题过程的思维方法,注意考查不同思维方法的试题的协调和匹配,使考生的数学理性思维能力得到较全面的提高。
注意数学应用问题。新教学大纲指出:要增强用数学的意识,一方面通过背景材料,进行观察、比较、分析、综合、抽象和推理,得出数学概念和规律,另一方面更重要的是能够运用已有的知识将实际问题抽象为数学问题,建立数学模型。解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。
彰显创新意识,挖掘潜在能力(以课本为主干,重点研究开放性问题,创新问题,数形结合问题等)。高考对创新意识的考查,主要是要求考生不仅仅能理解一些概念、定义,掌握一些定理、公式,更重要的是能够应用这些知识和方法解决数学中和现实生活中的比较新颖的问题。数学教育的目的不单单是让学生掌握一些知识,也不是把每个人都培养成数学家,而是把数学作为材料和工具,通过数学的学**和训练,在知识和方法的应用中提高综合能力和基本素质,形成科学的世界观和方法论。因此,高考对创新意识的考查其意义已超出了数学学**,对提高学**和工作能力,对今后的人生都有重要的意义。
回归教材本源,发挥课本功能。数学复**,任务重,时间紧,但绝不可因此而脱离教材.相反,要紧扣大纲,抓住教材,在总体上把握教材,明确每一章、节的知识在整体中的地位、作用.近年来高考每年的试题都与教材有着密切的联系,有的是将教材中的题目略加修改、变形后作为高考题目;还有的是将教材中的题目合理拼凑、组合作为高考题的.因此,一定要高度重视教材。
(三)教学建议
高三文、理科对4—系列的选修都是在4—1,4—4,4—5中三选二。
选修4—1 几何证明选讲有助于培养学生的逻辑推理能力,在几何证明的过程中,不仅是逻辑演绎的程序,它还包含着大量的观察、探索、发现的创造性过程。本专题从复**相似图形的性质入手,证明一些反映圆与直线关系的重要定理,并通过对圆锥曲线性质的进一步探索,提高学生空间想像能力、几何直观能力和运用综合几何方法解决问题的能力。
内容与要求
复习相似三角形的定义与性质,了解平行截割定理,证明直角三角形射影定理。
证明圆周角定理、圆的切线的判定定理及性质定理。
证明相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理。
了解平行投影的含义,通过圆柱与平面的位置关系,体会平行投影;证明平面与圆柱面的截线是椭圆(特殊情形是圆)。
通过观察平面截圆锥面的情境,体会给定的定理。
选修4—4坐标系与参数方程
坐标系是解析几何的基础。在坐标系中,可以用有序实数组确定点的位置,进而用方程刻画几何图形。为便于用代数的方法刻画几何图形或描述自然现象,需要建立不同的坐标系。极坐标系、柱坐标系、球坐标系等是与直角坐标系不同的坐标系,对于有些几何图形,选用这些坐标系可以使建立的方程更加简单。
参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的又一种表示形式。某些曲线用参数方程表示比用普通方程表示更方便。
本专题是解析几何初步、平面向量、三角函数等内容的综合应用和进一步深化。极坐标系和参数方程是本专题的重点内容,对于柱坐标系、球坐标系等只作简单了解。通过对本专题的学习,学生将掌握极坐标和参数方程的基本概念,了解曲线的多种表现形式,体会从实际问题中抽象出数学问题的过程,培养探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用意识和实践能力。
内容与要求
坐标系
(1)回顾在平面直角坐标系中刻画点的位置的方法,体会坐标系的作用。
(2)通过具体例子,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。
(3)能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。
(4)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。
参数方程
(1)通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
(2)分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程。
(3)举例说明某些曲线用参数方程表示比用普通方程表示更方便,感受参数方程的优越性。
选修4-5:不等式选讲。
本专题将介绍一些重要的不等式和它们的证明、数学归纳法和它的简单应用。本专题特别强调不等式及其证明的几何意义与背景,以加深学生对这些不等式的数学本质的理解,提高学生的逻辑思维能力和分析解决问题的能力。
内容与要求
回顾和复习不等式的基本性质和基本不等式。
理解绝对值的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:
了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题。
会用不等式证明一些简单问题。
通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法
推荐访问:分数 高中 高中分数8篇 高中分数(通用8篇) 高中分数公式大全