五年级归纳总结数学第1篇倍数问题:2的倍数有哪些?2的倍数有:2,4,6,8…例1、小蜗牛找倍数(找出3的倍数)。练习3、5的倍数有哪些?7的倍数呢?5的倍数:7的倍数:一个数的倍数的个数是(),一个下面是小编为大家整理的五年级归纳总结数学7篇,供大家参考。
五年级归纳总结数学 第1篇
倍数
问题:2的倍数有哪些?
2的倍数有:2,4,6,8 …
例1、 小蜗牛找倍数(找出3的倍数)。
练习3、5的倍数有哪些?7的倍数呢?
5的倍数:
7的倍数:
一个数的倍数的个数是( ),一个数的最小的倍数是( ),( )的倍数。
用字母表示因数与倍数的关系:a x b = c (a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。
说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?
1、根据算式:4×8=32
说一说,谁是谁的因数?谁是的倍数?
2、根据算式:63÷7=9
说一说,谁是谁的因数?谁是的倍数?
3、判断:÷我们能说和6是的因数;是的倍数,也是6的倍数吗?为什么?
小试牛刀
填空:
(1)3×7=21,( )和( )是( )的因数,( )是( )和( )的倍数。
(2)72的因数是( ),最小倍数是( ),最小因数是( )。
(3)一个数(0除外),它的因数和最小倍数都是( )。
判断:
(1)6是因数,30是倍数。
( )
(2)因为8÷,所以8是和10的倍数,和10是8的因数。
( )
(3)一个数的因数一定小于这个数。
( )
(4)甲数比乙数大,甲因数的个数比乙数多。()
3、写出各数的因数或倍数。
五年级归纳总结数学 第2篇
知识点:因数
问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?
所以12的因数有:
注意:1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。2、因数和倍数不能单独存在。
例1 18的因数有那些?
方法一:想18可以有哪两个数相乘得到18=1×18 18=2×9 18=3×6
方法二:根据整除的意义得到
18÷1=18 18÷2=9 18÷3=6
所以18的因数有:
表示方法:
列举法︰ 12的因数有:1,2,3,4,6,12
用集合表示︰
练习1:30的因数有哪些?36呢?
30的因数有:
36的因数有:
观察:18的最小因数是( ),的因数是( )
30的最小因数是( ),的因数是 )
36的最小因数是( ),的因数是( )
一个数的因数的个数是有限的,一个数的最小因数是( ),因数是( )
你要知道:
(1)1的因数只有1,的因数和最小的因数都是它本身。
(2)除1以外的整数,至少有两个因数。
(3)任何自然数都有因数1。
练习2、把下列各数填入相应的集合圈中。
1 2 3 4 5 6 7 8 9 10 12
15 16 18 20 24 30 36 6
36的因数 60的因数
五年级归纳总结数学 第3篇
1、方程的意义
含有未知数的等式,叫做方程。
2、方程和等式的关系
3、方程的解和解方程的区别
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤
(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式
加数=和-另一个加数减数=被减数–差被减数=差+减数
因数=积另一个因数除数=被除数商被除数=商除数
五年级归纳总结数学 第4篇
1、合理安排学习计划
根据小升初的形势,六年级寒假就应该是综合复习的时候。这样从三年级暑假开始算起,到六年级寒假只有两年半的时间。我们建议学生在两年半时间里一定要扎实学习奥数知识。整个学习过程要按梯度进行,切莫一味做难题,根据学生学习情况,一步一个台阶。兼顾竞赛、仁华、重点学校培训班,早做规划,早做 准备。
2、巩固基础知识
由于还有一年就要转入小升初的复习阶段,所以五年级之前的奥数基础内容一定要掌握好。之前的奥数内容以应用题、计算为主。对于基本应用题建议利用方程的方法求解,可以达到事半功倍的效果。计算问题需要对基本的简算方法了如指掌,因为这些方法也是以后分数计算和综合混合运算的基础。
3、多做专题练习
五年级是接触专题最多的时期,小学阶段的重要知识点和难点也都集中在这个阶段。其中数论、行程问题、排列组合是重中之重,如果这几个专题掌握的不好,想上一个理想的中学是非常困难的。做专题练习也不能光看做了多少道题,要保证练一道会一道,真正的理解并掌- -
握所做的题目,日积月累,几个重点难点也就不再是老大难问题了。
4、选择合适的班型
秋季的课程将继续依从《新概念奥林匹克丛书》的安排,实行科学的数学课程体系。该体系由《数学思维训练 导引》(已出版)、《数学思维训练 课本》(未出版)和《数学思维训练 教师用书》(未出版)三个部分组成。丛书有很强的系统性、趣味性、实用性、权威性。它的难度由低到高分为三个层次:兴趣篇、拓展篇、超越篇,分别对应新华数课本班、新华数竞赛班和新华数尖子班。无论是注重打牢奥数基础的学生,还是希望在奥数竞赛上摘金夺银的学生,在这里都可以找到适合你的课程。经过暑假的 学习,你一定对自己的实力和潜力有所了解,在秋季的学习中,学生和家长可以根据自身的实力,选择合适的班型。
5、积极参加各种竞赛
尽早参加数学竞赛,能够帮助孩子开阔眼界,拓展思维。另外熟悉比赛题型,为五、六年级在重要竞赛中获奖无疑打下了很好的基础。
五年级归纳总结数学 第5篇
1、上课时专心一致
上课时要全心投入课堂活动,这项要求是老生常谈,却是学好数学最简单的途径。孩子有时会自恃数学能力很好,或许是在补习班已学过相关的课程内容,或许是挑战权威,认为老师不够专业,解题能力不比自己厉害,也或者受到其他同学的干扰或自己主动与同学交谈,以致未跟上课堂的学习,更忽视了老师的讲解,这种行为实在是不太聪明。因为上课不专心通常会遭到老师的指正,若再答不出老师问的问题,可是大大的失了面子;若是因不专心而漏失应学而未学的重点,可就连里子也失去了。
2、下课后认真习写题目并检视解题方法
五年级的数学题目不但题目难度提升,计算亦较复杂,计算能力不佳的孩子,会发现自己常常计算错误,在教学经验中还常发现孩子连九九乘法都背错,例如:8×4=36等。
要提高计算的准确度及速度,适度的练习是必要的,所以孩子应每日准时完成功课,老师通常会考量孩子们的需求,分派数学功课让孩子回家写,孩子应积极完成,并建议习写完后,自行检视自己的解题方式是否又快又好?若不然,则尝试其他的解题方式。如此一来,不仅可透过写作业,加强解题的熟练度,更可透过多一次的尝试,练习不同的解题方式,活化自己的思考。
3、遇到问题勇于发问
五年级孩子常因好面子或怕自曝其短,而不愿主动询问师长,不耻下问是学习知识的方式之一,更何况是不耻“上”问;请孩子勇于发问,课堂上遇到不懂之处则问;习写作业时,不懂则问;遇到生活中的数学问题,不懂则问;问师长、问爸妈、问同学,多询问可触发思考,有时在问答的过程中,灵机一动,困难的数学问题一下子就迎刃而解了,何乐而不为?
4、多涉猎有趣的数学问题
数学学习不应局限于教科书中,在生活中,可以尽量增加孩子接触数学问题的机会,有许多儿童书籍、儿童杂志或数学网站中呈现了经典又有趣的数学问题,例如:河内塔问题、渡河问题等,不仅可以让孩子多方尝试不同的数学题目,从解题中得到乐趣,而且独乐乐不如众乐乐,可将解题做为亲子之间共同的任务,让解题也变成家庭乐趣来源之一!
5、寻找志同道合的同伴
五年级孩子即将进入青春期,也开始了重视同学多于重视师长的阶段。若能透过班级、社团或营队,让孩子找到志同道合的同伴,不仅可以透过对话与讨论,提高孩子学习数学的兴趣和深化彼此的数学思考,也可在孩子的学习过程受折或成绩不理想时,凭借友谊的力量,减低沮丧感,增加挫折忍受力,更可透过良性竞争,激发孩子主动向上的学习意愿,可谓好处多多呢!
6、避免过度干涉,以免造成反效果
家长从旁协助功课习写时,宜给孩子适度表达自己想法和犯错的机会,部分家长因心急,在孩子未完整作答前,便批评孩子的算法,长此以往,导致孩子不是不愿意接受家长的指导,就是过度依赖他人指导,无法独立思考、完成习题,更甚者,只等着抄袭他人的答案,拒绝自己尝试作答,这可就得不偿失了。
五年级归纳总结数学 第6篇
一、意义
1、小数乘整数:求几个相同加数的和的简便运算。
如:++++改用乘法算式表示为(×5),这个乘法算式表示的意义是(5个是多少)
2、小数乘小数:就是求这个数的几分之几是多少。
如:×就是求的十分之八是多少。
二、算理
1、计算方法:按整数乘法的法则算出积,再点小数点;点小数点时,要看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
小数乘法计算法则简记为:一算,二看,三数,四点,五去;
2、注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、乘法的验算有很多种方法:可以交换两个因数的位置再算一遍;可以用估算的方法;还可以用计算器验算。
4、积与因数的关系:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
用字母表示:a×b=c(a不等于0)
b>1,a>c
b=1,a=c
b<1,a
三、积的近似数
1、求近似数的方法有三种:四舍五入法、进一法、去尾法,在这一单元主要用四舍五入法。
步骤如下:先按照小数乘小数的方法算出积,再按题目的要求和“四舍五入”法取近似值。
注意:表示近似数时小数末尾的0不能随便去掉。
如:保留两位小数是()
2、通常情况下,人民币的最小单位是分,以元为单位的小数表示“分”的是百分位。
四、混合运算
小数四则运算顺序跟整数是一样的。
整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
关于乘法分配律的简算是这一部分的重点和难点。
案例:××4
×202
×
×+×
×32×
五、解决问题
1、实际生活中的估算应用,可以估大或者估小,要根据实际情况选择适当的估算策略。
2、分段计费的问题,比如乘坐出租车的问题、电费水费的问题都属于分段计费。解决方案有两种:第一种分段计费后在合并;第二种全程单价计算然后再加上少算的金额。
五年级归纳总结数学 第7篇
( )平均分成( )份,这样的( )份用( )表示。
把( )平均分成( )份,这样的( )份用( )表示。
分数的意义:
一个物体、一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
例如
一个整体可以用自然数1表示,通常把它叫单位“1”。
把 看成单位“1”,每个 是 的1/4。
练习
每个茶杯是(这套茶杯)的( )分之( )。
每袋粽子是( )的( )分之( )。
每种颜色的跳棋是( )的( )分之( )。
阴影的方格是( )的( )分之( )。
二 分数单位
把单位“1”平均分成若干份,表示其中一份的数叫分数单位。例如 ( )的分数单位是( ),( )的分数单位是( ),( )的分数单位是( )。
三 分数与除法
思考
1、 把三个苹果平均分给2个人,每个人分几个?
2、 把1个苹果平均分给2个人,每个人分几个?
3、 把3块饼平均分给5个小朋友,每人分得多少块?
3÷5= (块)
推荐访问: